Sains Malaysiana 54(2)(2025): 589-599

http://doi.org/10.17576/jsm-2025-5402-23

 

Improving Corrosion Protection of Urethane Acrylate UV Curable Coatings Derived from Palm Oil via Graphene Oxide Particle Incorporation

(Peningkatan Perlindungan Kakisan Salutan Uretana Akrilat Pengawetan UV daripada Minyak Sawit melalui Penggabungan Zarah Oksida Grafena)

 

MOHD SOFIAN ALIAS1,4, RABIAHTUL ZULKAFLI2, NORINSAN KAMIL OTHMAN1,*, MOHD SUZEREN MD. JAMIL3, SITI RADIAH MOHD KAMARUDIN4, SITI FATAHIYAH MOHAMAD4, MOHD HAMZAH HARUN4, MAHATHIR MOHAMED4 & MAZNAH MAHMUD4

 

1Materials Science Programme, Department of Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Earth Sciences and Environments, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia

 

Diserahkan: 14 Oktober 2024/Diterima: 12 November 2024

 

Abstract

This study explores the enhancement of corrosion protection properties in urethane acrylate UV-curable coatings derived from palm oil through the incorporation of graphene oxide particles (GOP). GOP were added into palm oil-based urethane acrylate (POBUA) using a sonication technique. The performance of POBUA with the influence of GOP was determined using Thermal Gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy (FESEM). Meanwhile, the corrosion testing was confirmed by electrochemical testing of Electrochemical Impedance Spectroscopy (EIS). TGA demonstrated that the presence of GOP a coating additive, improved the coating in the POBUA, enabling better heat absorption. This is because more energy was required to break the polymer chain during decomposition. Additionally, EIS showed that the diffusion of corrosive ions was hindered due to the tortuous pathways created by the GOP within the POBUA network. The highest Rct value of POBUA coating with 0.5 wt% GOP give 99.64% corrosion protection for mild steel which significantly improved compared to neat POBUA coating which only 63.6% corrosion protection. Furthermore, contact angle analysis showed the presence of GOP improved hydrophobicity properties of POBUA coating contributing to their excellent corrosion resistance. These findings highlight the potential of POBUA/GOP curable coatings for providing effective protection of mild steel surfaces.

Keywords: Corrosion protection; graphene oxide particles; palm oil; UV curable coating

 

Abstrak

Penyelidikan ini meneliti penambahbaikan sifat perlindungan kakisan dalam salutan penyembuhan UV uretana akrilat yang berasal daripada minyak sawit (POBUA) melalui penggabungan zarah oksida grafin (GOP). GOP telah ditambah ke dalam uretena akrilat minyak sawit menggunakan teknik sonikasi. Prestasi POBUA dengan pengaruh GOP telah ditentukan menggunakan analisis gravimetri termal (TGA) dan mikroskopi imbasan elektron imbasan medan (FESEM). Sementara itu, ujian kakisan disahkan melalui ujian elektrokimia iaitu spektroskopi impedans elektrokimia (EIS). TGA menunjukkan bahawa kehadiran GOP dalam salutan POBUA meningkatkan penyerapan haba, kerana lebih banyak tenaga diperlukan untuk memecahkan rantai polimer semasa penguraian. Selain itu, EIS menunjukkan bahawa penyebaran ion kakisan terhalang disebabkan oleh laluan berliku yang dicipta oleh GOP dalam rangkaian POBUA. Nilai Rct tertinggi bagi salutan POBUA dengan 0.5 wt% GO memberikan perlindungan kakisan optimum iaitu sebanyak 99.64% berbanding salutan POBUA yang hanya memberikan 63.6% perlindungan kakisan tehadap keluli lembut. Selain itu, analisis sudut sentuhan menunjukkan kehadiran GOP meningkatkan sifat hidrofobik salutan POBUA. Penemuan ini menonjolkan potensi salutan POBUA/GOP sebagai salutan perlindungan karat bagi permukaan keluli lembut.

Kata kunci: Minyak sawit; perlindungan karat; salutan penyembuhan UV; zarah gentian oksida

 

RUJUKAN

Alam, M., Akram, D., Sharmin, E., Zafar, F. & Ahmad, S. 2014. Vegetable oil based eco-friendly coating materials: A review article. Arabian Journal of Chemistry 7(4): 469-479.

Alias, M.S., Othman, N.K., Kamarudin, S.R.M., Harun, M.H., Mohamed, M., Saidin, N.U., Mohamad, S.F. & Samsu, Z. 2022. Influence of graphite particles in UV-curable corrosion protection coating from palm oil based urethane acrylate (POBUA). Industrial Crops and Products 187: 115436-115451.

Ahmed, B., Suhaila, N., Anbalagan, M.A., Hossen, M.D., Yunus, R. & Abdullah, A. 2020. Formulation of heat resistant paint from palm oil based resin by using nano-silica particles. IOP Conference Series: Earth and Environmental Science 442(1): 012004.

Ariffin, M.M., Aung, M.M., Abdullah, L.C. & Salleh, M.Z. 2020. Assessment of corrosion protection and performance of bio-based polyurethane acrylate incorporated with nano zinc oxide coating. Polymer Testing 87: 106526-106535.

Cubides, Y. & Castaneda, H. 2016. Corrosion protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon steel in simulated concrete pore solutions in the presence of chloride ions. Corrosion Science 109: 145-161.

Di, H., Yu, Z., Ma, Y., Zhang, C., Li, F., Lv, L., Pan, Y., Shi, H. & He, Y. 2016. Corrosion-resistant hybrid coatings based on graphene oxide–zirconia dioxide/epoxy system. Journal of the Taiwan Institute of Chemical Engineers 67: 511-520.

Ding, R., Zheng, Y., Yu, H., Li, W., Wang, X. & Gui, T. 2018. Study of water permeation dynamics and anti-corrosion mechanism of graphene/zinc coatings. Journal of Alloys and Compounds 748: 481-495.

Harun, M.H. 2021. Characterization of hydrophobic UV-curable acrylated coating from palm oil based urethane acrylate (POBUA) for wood coating application. Journal of Nuclear and Related Technologies 18(02): 1-7.

Huang, H-D., Ren, P-G., Chen, J., Zhang, W-Q., Ji, X. & Li, Z-M. 2012. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. Journal of Membrane Science 409-410: 156-163.

Huang, X., Zhi, C., Lin, Y., Bao, H., Wu, G., Jiang, P. & Mai, Y-W. 2020. Thermal conductivity of graphene-based polymer nanocomposites. Materials Science and Engineering: R: Reports 142: 100577-100590.

Jang, J-H., Oh, B. & Lee, E-J. 2021. Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel synthesis and its characterization. Ceramics International 47(19): 27677-27684.

Khatoon, H., Iqbal, S., Irfan, M., Darda, A. & Rawat, N.K. 2021. A review on the production, properties and applications of non-isocyanate polyurethane: A greener perspective. Progress in Organic Coatings 154: 106124-106140.

Kumar, S.S.A., Bashir, S., Ramesh, K. & Ramesh, S. 2021. New perspectives on graphene/graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the graphene/polymer barrier coatings. Progress in Organic Coatings 154: 106215-106230.

Liu, S., Tian, M., Yan, B., Yao, Y., Zhang, L., Nishi, T. & Ning, N. 2015. High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer 56: 375-384.

Mahidashti, Z., Shahrabi, T. & Ramezanzadeh, B. 2018. The role of post-treatment of an ecofriendly cerium nanostructure conversion coating by green corrosion inhibitor on the adhesion and corrosion protection properties of the epoxy coating. Progress in Organic Coatings 114: 19-32.

Mellado, C., Figueroa Aguilar, T., Báez, R., Meléndrez, M. & Fernández, K. 2019. Effects of probe and bath ultrasonic treatments on graphene oxide structure. Materials Today Chemistry 13: 1-7.

Mustapha, S.N.H., Md Nizam, M.N., Mohamad Isa, M.I., Roslan, R. & Mustapha, R. 2022. Synthesis and characterization of hydrophobic properties of silicon dioxide in palm oil based bio-coating. Materials Today: Proceedings 51: 1415-1419.

Nam, K-H., Seo, K., Seo, J., Khan, S.B. & Han, H. 2015. Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on surface-modified calcium carbonate. Progress in Organic Coatings 85: 22-30.

Nik Salleh, N.G., Firdaus Yhaya, M., Hassan, A., Abu Bakar, A. & Mokhtar, M. 2011. Effect of UV/EB radiation dosages on the properties of nanocomposite coatings. Radiation Physics and Chemistry 80(2): 136-141.

Nissenbaum, A., Greenfeld, I. & Wagner, H.D. 2020. Shape memory polyurethane - Amorphous molecular mechanism during fixation and recovery. Polymer 190: 122226-122234.

Pourhashem, S., Vaezi, M.R., Rashidi, A. & Bagherzadeh, M.R. 2017. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science 115: 78-92.

Prolongo, S.G., Moriche, R., Jiménez-Suárez, A., Sánchez, M. & Ureña, A. 2014. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. European Polymer Journal 61: 206-214.

Radovic, L.R., Mora-Vilches, C.V., Salgado-Casanova, A.J.A. & Buljan, A. 2017. Graphene functionalization: Mechanism of carboxyl group formation. Carbon 130: 340-349.

Rajabi, M., Rashed, G.R. & Zaarei, D. 2015. Assessment of graphene oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel. Corrosion Engineering, Science and Technology 50(7): 509-516.

Said, H.M., Nik Salleh, N.G., Alias, M.S. & El-Naggar, A.W.M. 2013. Synthesis and characterization of hard materials based on radiation cured bio-polymer and nanoparticles. Journal of Radiation Research and Applied Sciences 6(2): 71-78.

Sandhyarani, M., Prasadrao, T. & Rameshbabu, N. 2014. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium. Applied Surface Science 317: 198-209.

Sang, L., Hao, W., Zhao, Y., Yao, L. & Cui, P. 2018. Highly aligned graphene oxide/waterborne polyurethane fabricated by in-situ polymerization at low temperature. e-Polymers 18(1): 75-84.

Sarkar, M., Hasanuzzaman, M., Gulshan, F. & Rashid, A. 2020. Surface, mechanical and shape memory properties of biodegradable polymers and their applications. Reference Module in Materials Science and Materials Engineering 2: 1092-1099.

Scully, J.R. & Hensley, S.T. 1994. Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods. Corrosion 50(9): 705-716.

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S. & Bhowmick, A.K. 2011. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science 36(5): 638-670.

Seo, J., Jeon, G., Jang, E., Khan, S. & Han, H. 2011. Preparation and properties of poly(propylene carbonate) and nanosized ZnO composite films for packaging applications. Journal of Applied Polymer Science 122: 1101-1108.

Suleiman, R.K., Kumar, A.M., Adesina, A.Y., Al-Badour, F.A., Meliani, M.H. & Saleh, T.A. 2020. Hybrid organosilicon-metal oxide composites and their corrosion protection performance for mild steel in 3.5% NaCl solution. Corrosion Science 169: 108637-108648.

Thanh, N.T. 2022. Effect of graphene oxide on UV-thermo-humidity degradation of environmentally friendly alkyd composite coating. Malaysian Journal on Composites Science and Manufacturing 9(1): 1-10.

Wan Rosli, W.D., Kumar, R.N., Mek Zah, S. & Hilmi, M.M. 2003. UV radiation curing of epoxidized palm oil–cycloaliphatic diepoxide system induced by cationic photoinitiators for surface coatings. European Polymer Journal 39(3): 593-600.

Yahya, S., Othman, N.K. & Ismail, M.C. 2019. Corrosion inhibition of steel in multiple flow loop under 3.5% NaCl in the presence of rice straw extracts, lignin and ethylene glycol. Engineering Failure Analysis 100: 365-380.

Yu, R., Wang, Q., Wang, W., Xiao, Y., Wang, Z., Zhou, X., Zhang, X., Zhu, X. & Fang, C. 2021. Polyurethane/graphene oxide nanocomposite and its modified asphalt binder: Preparation, properties and molecular dynamics simulation. Materials & Design 209: 109994-109100.

Zulkafli, R., Othman, N.K., Rahman, I.A. & Jalar, A. 2014. Effect of rice straw extract and alkali lignin on the corrosion inhibition of carbon steel. The Malaysian Journal of Analytical Sciences 18(1): 204-211.

Zuo, Y., Pang, R., Li, W., Xiong, J.P. & Tang, Y.M. 2008. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corrosion Science 50(12): 3322-3328.

 

*Pengarang untuk surat-menyurat; email: insan@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya