Sains Malaysiana 54(2)(2025): 589-599
http://doi.org/10.17576/jsm-2025-5402-23
Improving
Corrosion Protection of Urethane Acrylate UV Curable Coatings Derived from Palm
Oil via Graphene Oxide Particle Incorporation
(Peningkatan Perlindungan Kakisan Salutan Uretana Akrilat Pengawetan UV daripada Minyak Sawit melalui Penggabungan Zarah Oksida Grafena)
MOHD
SOFIAN ALIAS1,4, RABIAHTUL ZULKAFLI2, NORINSAN
KAMIL OTHMAN1,*, MOHD SUZEREN MD. JAMIL3,
SITI RADIAH MOHD KAMARUDIN4, SITI FATAHIYAH MOHAMAD4,
MOHD HAMZAH HARUN4, MAHATHIR MOHAMED4 & MAZNAH MAHMUD4
1Materials Science Programme, Department of
Applied Physics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Earth Sciences and Environments, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
Diserahkan: 14 Oktober 2024/Diterima: 12 November 2024
Abstract
This study explores the enhancement of corrosion protection properties
in urethane acrylate UV-curable coatings derived from palm oil through the
incorporation of graphene oxide particles (GOP). GOP were added into palm
oil-based urethane acrylate (POBUA) using a sonication technique. The
performance of POBUA with the influence of GOP was determined using Thermal
Gravimetric analysis (TGA) and Field Emission Scanning Electron Microscopy
(FESEM). Meanwhile, the corrosion testing was confirmed by electrochemical
testing of Electrochemical Impedance Spectroscopy (EIS). TGA demonstrated that
the presence of GOP a coating additive, improved the coating in the POBUA,
enabling better heat absorption. This is because more energy was required to
break the polymer chain during decomposition. Additionally, EIS showed that the
diffusion of corrosive ions was hindered due to the tortuous pathways created
by the GOP within the POBUA network. The highest Rct value of POBUA coating with 0.5 wt% GOP give 99.64%
corrosion protection for mild steel which significantly improved compared to
neat POBUA coating which only 63.6% corrosion protection. Furthermore, contact
angle analysis showed the presence of GOP improved hydrophobicity properties of
POBUA coating contributing to their excellent corrosion resistance. These
findings highlight the potential of POBUA/GOP curable coatings for providing
effective protection of mild steel surfaces.
Keywords: Corrosion protection; graphene
oxide particles; palm oil; UV curable coating
Abstrak
Penyelidikan ini meneliti penambahbaikan sifat perlindungan kakisan dalam salutan penyembuhan UV uretana akrilat yang berasal daripada minyak sawit (POBUA) melalui penggabungan zarah oksida grafin (GOP). GOP telah ditambah ke dalam uretena akrilat minyak sawit menggunakan teknik sonikasi. Prestasi POBUA dengan pengaruh GOP telah ditentukan menggunakan analisis gravimetri termal (TGA) dan mikroskopi imbasan elektron imbasan medan (FESEM). Sementara itu, ujian kakisan disahkan melalui ujian elektrokimia iaitu spektroskopi impedans elektrokimia (EIS). TGA menunjukkan bahawa kehadiran GOP dalam salutan POBUA meningkatkan penyerapan haba, kerana lebih banyak tenaga diperlukan untuk memecahkan rantai polimer semasa penguraian. Selain itu, EIS menunjukkan bahawa penyebaran ion kakisan terhalang disebabkan oleh laluan berliku yang dicipta oleh GOP dalam rangkaian POBUA. Nilai Rct tertinggi bagi salutan POBUA dengan 0.5 wt% GO memberikan perlindungan kakisan optimum iaitu sebanyak 99.64% berbanding salutan POBUA yang hanya memberikan 63.6% perlindungan kakisan tehadap keluli lembut. Selain itu, analisis sudut sentuhan menunjukkan kehadiran GOP meningkatkan sifat hidrofobik salutan POBUA. Penemuan ini menonjolkan potensi salutan POBUA/GOP sebagai salutan perlindungan karat bagi permukaan keluli lembut.
Kata kunci: Minyak sawit; perlindungan karat; salutan penyembuhan UV; zarah gentian oksida
RUJUKAN
Alam, M., Akram, D., Sharmin, E., Zafar, F. & Ahmad, S. 2014. Vegetable oil
based eco-friendly coating materials: A review article. Arabian Journal of
Chemistry 7(4): 469-479.
Alias, M.S., Othman, N.K., Kamarudin, S.R.M., Harun, M.H., Mohamed, M., Saidin, N.U., Mohamad, S.F. & Samsu,
Z. 2022. Influence of graphite particles in UV-curable corrosion protection
coating from palm oil based urethane acrylate (POBUA). Industrial Crops and Products 187: 115436-115451.
Ahmed, B., Suhaila,
N., Anbalagan, M.A., Hossen,
M.D., Yunus, R. & Abdullah, A. 2020. Formulation
of heat resistant paint from palm oil based resin by
using nano-silica particles. IOP Conference
Series: Earth and Environmental Science 442(1): 012004.
Ariffin, M.M., Aung, M.M., Abdullah, L.C. &
Salleh, M.Z. 2020. Assessment of corrosion protection and performance of
bio-based polyurethane acrylate incorporated with nano zinc oxide coating. Polymer Testing 87: 106526-106535.
Cubides, Y. & Castaneda, H. 2016. Corrosion
protection mechanisms of carbon nanotube and zinc-rich epoxy primers on carbon
steel in simulated concrete pore solutions in the presence of chloride ions. Corrosion
Science 109: 145-161.
Di, H., Yu, Z., Ma, Y., Zhang, C., Li, F., Lv, L., Pan, Y., Shi, H. & He, Y. 2016.
Corrosion-resistant hybrid coatings based on graphene oxide–zirconia
dioxide/epoxy system. Journal of the Taiwan Institute of Chemical Engineers 67: 511-520.
Ding, R., Zheng, Y., Yu, H., Li, W., Wang,
X. & Gui, T. 2018. Study of water permeation
dynamics and anti-corrosion mechanism of graphene/zinc coatings. Journal of
Alloys and Compounds 748: 481-495.
Harun, M.H. 2021. Characterization of hydrophobic
UV-curable acrylated coating from palm oil based urethane acrylate (POBUA) for wood coating
application. Journal of Nuclear and Related Technologies 18(02): 1-7.
Huang, H-D., Ren, P-G., Chen, J., Zhang,
W-Q., Ji, X. & Li, Z-M. 2012. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. Journal of
Membrane Science 409-410: 156-163.
Huang, X., Zhi,
C., Lin, Y., Bao, H., Wu, G., Jiang, P. & Mai, Y-W. 2020. Thermal
conductivity of graphene-based polymer nanocomposites. Materials Science and
Engineering: R: Reports 142: 100577-100590.
Jang, J-H., Oh, B. & Lee, E-J. 2021.
Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel
synthesis and its characterization. Ceramics International 47(19):
27677-27684.
Khatoon, H., Iqbal, S., Irfan, M., Darda, A. & Rawat, N.K. 2021. A review on the
production, properties and applications of non-isocyanate polyurethane: A
greener perspective. Progress in Organic Coatings 154: 106124-106140.
Kumar, S.S.A., Bashir, S., Ramesh, K. &
Ramesh, S. 2021. New perspectives on graphene/graphene oxide
based polymer nanocomposites for corrosion applications: The relevance
of the graphene/polymer barrier coatings. Progress in Organic Coatings 154: 106215-106230.
Liu, S., Tian, M., Yan, B., Yao, Y., Zhang,
L., Nishi, T. & Ning, N. 2015. High performance dielectric elastomers by
partially reduced graphene oxide and disruption of hydrogen bonding of
polyurethanes. Polymer 56: 375-384.
Mahidashti, Z., Shahrabi,
T. & Ramezanzadeh, B. 2018. The role of
post-treatment of an ecofriendly cerium nanostructure
conversion coating by green corrosion inhibitor on the adhesion and corrosion
protection properties of the epoxy coating. Progress in Organic Coatings 114: 19-32.
Mellado, C., Figueroa Aguilar, T., Báez, R., Meléndrez, M. &
Fernández, K. 2019. Effects of probe and bath ultrasonic treatments on graphene
oxide structure. Materials Today Chemistry 13: 1-7.
Mustapha, S.N.H., Md Nizam, M.N., Mohamad
Isa, M.I., Roslan, R. & Mustapha, R. 2022.
Synthesis and characterization of hydrophobic properties of silicon dioxide in
palm oil based bio-coating. Materials Today:
Proceedings 51: 1415-1419.
Nam, K-H., Seo,
K., Seo, J., Khan, S.B. & Han, H. 2015.
Ultraviolet-curable polyurethane acrylate nanocomposite coatings based on
surface-modified calcium carbonate. Progress in Organic Coatings 85:
22-30.
Nik Salleh, N.G., Firdaus Yhaya, M., Hassan, A., Abu Bakar, A. & Mokhtar, M.
2011. Effect of UV/EB radiation dosages on the properties of nanocomposite
coatings. Radiation Physics and Chemistry 80(2): 136-141.
Nissenbaum, A., Greenfeld,
I. & Wagner, H.D. 2020. Shape memory polyurethane - Amorphous molecular
mechanism during fixation and recovery. Polymer 190: 122226-122234.
Pourhashem, S., Vaezi,
M.R., Rashidi, A. & Bagherzadeh, M.R. 2017. Exploring corrosion protection
properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild
steel. Corrosion Science 115: 78-92.
Prolongo, S.G., Moriche,
R., Jiménez-Suárez, A., Sánchez, M. & Ureña, A.
2014. Advantages and disadvantages of the addition of graphene nanoplatelets to
epoxy resins. European Polymer Journal 61: 206-214.
Radovic, L.R., Mora-Vilches,
C.V., Salgado-Casanova, A.J.A. & Buljan, A. 2017.
Graphene functionalization: Mechanism of carboxyl group formation. Carbon 130:
340-349.
Rajabi, M., Rashed,
G.R. & Zaarei, D. 2015. Assessment of graphene
oxide/epoxy nanocomposite as corrosion resistance coating on carbon steel. Corrosion
Engineering, Science and Technology 50(7): 509-516.
Said, H.M., Nik Salleh, N.G., Alias, M.S.
& El-Naggar, A.W.M. 2013. Synthesis and characterization of hard materials
based on radiation cured bio-polymer and nanoparticles. Journal of Radiation
Research and Applied Sciences 6(2): 71-78.
Sandhyarani, M., Prasadrao,
T. & Rameshbabu, N. 2014. Role of electrolyte
composition on structural, morphological and in-vitro biological
properties of plasma electrolytic oxidation films formed on zirconium. Applied
Surface Science 317: 198-209.
Sang, L., Hao, W., Zhao, Y., Yao, L. &
Cui, P. 2018. Highly aligned graphene oxide/waterborne polyurethane fabricated
by in-situ polymerization at low temperature. e-Polymers 18(1): 75-84.
Sarkar, M., Hasanuzzaman,
M., Gulshan, F. & Rashid, A. 2020. Surface, mechanical and shape memory
properties of biodegradable polymers and their applications. Reference
Module in Materials Science and Materials Engineering 2: 1092-1099.
Scully, J.R. & Hensley, S.T. 1994.
Lifetime prediction for organic coatings on steel and a magnesium alloy using
electrochemical impedance methods. Corrosion 50(9): 705-716.
Sengupta, R., Bhattacharya, M.,
Bandyopadhyay, S. & Bhowmick, A.K. 2011. A review
on the mechanical and electrical properties of graphite and modified graphite
reinforced polymer composites. Progress in Polymer Science 36(5):
638-670.
Seo, J., Jeon, G., Jang, E., Khan, S. &
Han, H. 2011. Preparation and properties of poly(propylene
carbonate) and nanosized ZnO composite films for
packaging applications. Journal of Applied Polymer Science 122:
1101-1108.
Suleiman, R.K., Kumar, A.M., Adesina, A.Y.,
Al-Badour, F.A., Meliani,
M.H. & Saleh, T.A. 2020. Hybrid organosilicon-metal oxide composites and
their corrosion protection performance for mild steel in 3.5% NaCl solution. Corrosion
Science 169: 108637-108648.
Thanh, N.T. 2022. Effect of graphene oxide
on UV-thermo-humidity degradation of environmentally friendly alkyd composite
coating. Malaysian Journal on Composites Science and Manufacturing 9(1):
1-10.
Wan Rosli, W.D.,
Kumar, R.N., Mek Zah, S.
& Hilmi, M.M. 2003. UV radiation curing of
epoxidized palm oil–cycloaliphatic diepoxide system
induced by cationic photoinitiators for surface
coatings. European Polymer Journal 39(3): 593-600.
Yahya, S., Othman, N.K. & Ismail, M.C.
2019. Corrosion inhibition of steel in multiple flow loop under 3.5% NaCl in
the presence of rice straw extracts, lignin and ethylene glycol. Engineering
Failure Analysis 100: 365-380.
Yu, R., Wang, Q., Wang, W., Xiao, Y., Wang,
Z., Zhou, X., Zhang, X., Zhu, X. & Fang, C. 2021. Polyurethane/graphene
oxide nanocomposite and its modified asphalt binder: Preparation, properties
and molecular dynamics simulation. Materials & Design 209:
109994-109100.
Zulkafli, R., Othman, N.K., Rahman, I.A. & Jalar, A. 2014. Effect of rice straw extract and alkali
lignin on the corrosion inhibition of carbon steel. The Malaysian Journal of
Analytical Sciences 18(1): 204-211.
Zuo, Y., Pang, R., Li, W., Xiong,
J.P. & Tang, Y.M. 2008. The evaluation of coating performance by the
variations of phase angles in middle and high frequency domains of EIS. Corrosion
Science 50(12): 3322-3328.
*Pengarang untuk surat-menyurat;
email: insan@ukm.edu.my
|